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Abstract 

Language comprehension is fast and seemingly effortless. However, in spite of long knowing what 
brain regions enable this feat, our knowledge of the precise neural computations that these 
frontotemporal regions implement remains limited. One highly controversial question is whether 
there exist functional differences among the neural populations that comprise the language 
network. Leveraging the high spatiotemporal resolution of intracranial recordings, we clustered 
the timecourses of responses to sentences and linguistically degraded conditions and discovered 
three response profiles that robustly differ in their temporal dynamics. Computational modeling 
of these profiles suggested that they reflect different temporal receptive windows (TRWs), with 
average TRWs of 1, 4, and 6 words. The electrodes exhibiting these profiles were interleaved 
across the language network, further suggesting that all language regions have direct access to 
distinct, multi-scale representations of linguistic input—a property that may be critical for the 
efficiency and robustness of language processing. 
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Introduction 

Language processing engages a network of brain regions that reside in the temporal and frontal 
lobes and are typically left-lateralized (e.g., Fedorenko et al., 2010; Pallier et al., 2011). These 
brain regions respond robustly to linguistic stimuli across presentation modalities (Fedorenko et 
al., 2010; Vagharchakian et al., 2012; Regev et al., 2013; Scott et al., 2017), tasks (Fedorenko et 
al., 2010; Cheung et al., 2020; Diachek, Blank, Siegelman et al., 2020), and languages (Malik-
Moraleda, Ayyash et al. 2022). This language-responsive network is highly selective for language, 
showing little or no response to diverse non-linguistic stimuli (e.g., Fedorenko et al., 2011; Monti 
et al., 2012; Deen et al., 2015; Ivanova et al., 2020, 2021; Liu et al., 2020; Chen et al., 2023). 
However, the precise computations and neuronal dynamics that underlie language 
comprehension remain debated. 
 
Based on neuroimaging and aphasia evidence, some have argued for dissociations among 
different aspects of language, including phonological/word-form processing (e.g., Okada and 
Hickok, 2006; Graves et al., 2008; DeWitt and Rauschecker, 2012), the processing of word 
meanings (e.g., Price et al., 1997; Rodd et al., 2005; Mesulam et al., 2013), and 
syntactic/combinatorial processing (e.g., Friederici, 2002, 2011; Hagoort, 2005; Grodzinsky and 
Santi, 2008; Matchin and Hickok, 2020). However, other studies have reported distributed 
sensitivity to these aspects of language across the language network (Fedorenko et al., 2010, 
2020; Bautista and Wilson, 2016; Blank et al., 2016; Huth et al., 2016; Shain, Blank et al., 2020; 
Regev et al., 2021). Some of the challenges in arriving at a clear answer may have to do with the 
limitations of the dominant methodologies available for studying language processing. For 
example, fMRI examines neural responses in voxels that are a few cubic millimeters in size. Each 
voxel contains a million or more individual neurons, which may differ functionally. If different 
linguistic computations are implemented in distinct neural populations that are distributed and 
interleaved across the language cortex, such dissociations may be difficult to detect with fMRI. 
Further, fMRI measures neural activity averaged across time (typically, every ~2 seconds), which 
may obscure linguistic computations that happen on a faster timescale (Figure 1). 
 
In recent years, invasive recordings of human neural activity (e.g., Mukamel and Fried, 2011), 
including electrocorticography (ECoG) and stereo electroencephalography (sEEG), have become 
increasingly available to language neuroscience researchers, as patients undergoing presurgical 
evaluation (usually for intractable epilepsy) agree to perform linguistic tasks while implanted with 
intracranial electrodes. These data have high spatial resolution (standard macro-electrodes 
record activity of relatively small populations of neurons) and high temporal resolution 
(millisecond-level), allowing the tracking of neural dynamics across both space and time. As a 
result, intracranial recordings have the potential to uncover both a) nearby electrodes that show 
distinct functional profiles (whose responses would be averaged in fMRI) (Figure 1A), and b) 
electrodes that show distinct activity patterns over time at the scale inaccessible to fMRI (Figure 
1B). 
 
Several previous studies have probed intracranial neural responses during language 
comprehension (e.g., Fedorenko et al., 2016; Nelson et al., 2017). For example, Fedorenko et al. 
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(2016) reported sensitivity in language-responsive electrodes to both word meanings and 
combinatorial processing, in line with fMRI findings (e.g., Fedorenko et al., 2010; Bedny et al., 
2011). They also reported a temporal profile where neural activity gradually increases (builds up) 
across the sentence (replicated by Nelson et al., 2017), which they interpreted as reflecting the 
construction of a sentence meaning. However, only a subset of the language-responsive 
electrodes showed this profile, leaving open the questions of what other response profiles may 
exist within the language network and what computations those profiles may be associated with. 
 
Here, we report a detailed investigation of neural responses during language processing. We 
focus on language-responsive electrodes (as in Fedorenko et al., 2016), which respond reliably 
more strongly to sentences compared to sequences of pseudowords. To foreshadow our findings, 
we report three response types that exhibit distinct temporal dynamics and vary in their response 
magnitudes to different linguistic conditions and in their degree of locking to the stimulus. We 
argue that these response types relate to the timescales of information integration in the 
language system (e.g., Lerner et al., 2011; Blank and Fedorenko, 2020), and use a simplified 
model of neural responses to estimate the temporal receptive window for each response type. 
 
 

 
 
Figure 1 – Low spatial and temporal resolution may obscure details of neural computations. A) 
Hypothetical effect sizes for 2 experimental conditions as measured using fMRI, with relatively low spatial and 
temporal resolution. B) Illustration of several possible outcomes of the same hypothetical experimental conditions 
when measured with intracranial EEG (ECoG/sEEG), which has both high spatial and high temporal resolution. The 
high spatial resolution may reveal the same effect size in smaller neural units (i) or, alternatively, it may reveal 
distinct functional profiles (including those that differ qualitatively from the average) (ii). The high temporal 
resolution may reveal distinct temporal dynamics as well (iii, iv). 
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Results 

We used intracranial recordings from patients with intractable epilepsy to investigate neural 
responses during language comprehension. Participants in Dataset 1 were presented with four 
types of linguistic stimuli that have been traditionally used to tease apart neural responses to 
word meanings and syntactic structure (Fedorenko et al., 2010, 2012, 2016; for earlier uses of 
this paradigm, see Mazoyer et al., 1993; Friederici et al., 2000; Humphries et al., 2001; 
Vandenberghe et al., 2002): sentences (S), lists of unconnected words (W), Jabberwocky 
sentences (J), and lists of nonwords (N) (Figure 2A,B, Methods, all stimuli are available at 
osf.io/xfbr8/). In each trial, 8 words or nonwords were presented on a screen serially and 
participants were asked to silently read them. To maintain alertness, after each trial participants 
judged whether a probe word/nonword had appeared in that trial. See Methods for further 
details of stimulus presentation. In Dataset 2, just two of these conditions were used: sentences 
and lists of nonwords. 
 
We asked three research questions: 1) Does the language network contain reliably distinct 
response profiles? If so - 2) What do these profiles reflect? And finally - 3) Do electrodes with 
different response profiles tend to be located in particular regions of the language network? We 
used Dataset 1 for initial evaluation of these questions because this dataset contained a richer 
set of experimental conditions. We then used Dataset 2 as an attempt to replicate the findings 
despite the more compact experimental paradigm. 
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Figure 2 – Experimental procedure and the distribution of the implanted electrodes for Dataset 
1. A) A sample trial from the sentences condition. B) Two sample items from each of the four experimental 
conditions. C) The locations of language-responsive (n=177, red; see Language-Responsive Electrode Selection) and 
non language-responsive (n=373, black) electrodes across the six participants in Dataset 1. Electrodes were 
implanted almost exclusively in the left hemisphere for Dataset 1 and concentrated in the temporal and frontal 
lobes, with language-responsive electrodes found across the cortex. D) Response reliability across odd and even 
trials (based on a correlation of mean responses) for language-responsive and non language-responsive electrodes. 
Language-responsive electrodes exhibit more reliable responses to linguistic stimuli than non language-responsive 
electrodes. 
 
 
1. Language-responsive electrodes exhibit reliably distinct response profiles. 
 
We clustered the gamma-band neural response patterns of language-responsive electrodes from 
Dataset 1 (6 participants, 177 language-responsive electrodes; Figure 2C, Methods, Table 1) to 
sentences (S), word-lists (W), Jabberwocky sentences (J) and nonword-lists (N) (Figure 2A, B). The 
k-medoids clustering algorithm (see Figure S1 for evidence that similar results emerge with a k-
means clustering algorithm), combined with the “elbow” method (Methods), suggested that 
three clusters (k=3) optimally explained the data (Figure 3A). Although we combined the 
electrodes from all 6 participants for clustering, electrodes that belong to Cluster 1 (92 total 
electrodes) and Cluster 2 (67 total electrodes) were evident in every participant individually, and 
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electrodes that belong to Cluster 3 (18 total electrodes) were evident in 4 of the 6 participants 
(Figure 3B). Furthermore, electrodes that exhibit more reliable responses to linguistic stimuli 
(Figure 2D, Methods) show clearer separation among the clusters in a low-dimensional space 
(Figure 3C), which suggests that these clusters appropriately characterize the underlying 
structure of language-selective responses. 
 
Inspection of the average timecourse by cluster (Figure 3E) revealed three distinct response 
profiles (see Figure 3D for best representative electrodes—medoids chosen by the k-medoids 
algorithm—from each cluster). Cluster 1 (n=92 electrodes) was characterized by a relatively slow 
increase (build-up) of neural activity across the 8 words in the S condition (a pattern similar to 
the one reported by Fedorenko et al., 2016 and Nelson et al., 2017; see Discussion), and much 
lower activity for the W, J, and N conditions, with no difference between the J and N conditions 
(Figure 3F). Cluster 2 (n=67 electrodes) displayed a quicker build-up of neural activity in the S 
condition that plateaued approximately 3 words into the sentence, a quick build-up of activity in 
the W condition that began to decay after the third word, and a similar response to the J and N 
conditions as to the W condition with an overall lower magnitude. Cluster 2 also exhibited 
‘locking’ of the neural activity to the onsets of individual words in the S condition. Finally, Cluster 
3 (n=18 electrodes) showed no build-up of activity, and instead was characterized by a high 
degree of locking to the onset of each word or nonword in all conditions. Additionally, the 
response magnitudes of Cluster 3 were more similar across conditions compared to the other 
two clusters, although the S>W>J>N pattern was still present (Figure 3F). 
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Figure 3 – Dataset 1 k-medoids clustering results. A) Search for optimal k using the “elbow method”. Top: 
variance (sum of the distances of all electrodes to their assigned cluster center) normalized by the variance when 
k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a function of k (NV(k+1) – NV(k)). After 
k=3, there is a large drop in the change in variance, suggesting that 3 clusters appropriately describe this dataset. B) 
Clustering mean electrode responses (concatenated across the four experimental conditions: sentences (S), word-
lists (W), jabberwocky (J), nonword-lists (N)) using k-medoids (k=3) with a correlation-based distance (Methods). 
Shading of the data matrix reflects normalized high-gamma power (70-150Hz). Clusters 1 and 2 (red and green, 
respectively) are present in all six participants, and Cluster 3 (blue) is present in four of six participants. C) Electrode 
responses visualized on their first two principal components, colored by cluster and shaded by the reliability of the 
neural signal as estimated by correlating responses to odd and even trials (Figure 2D). D) Timecourses of best 
representative electrodes (‘medoids’) selected by the algorithm from each of the three clusters. The timecourses 
reflect normalized high-gamma (70-150Hz) power averaged over all trials of a given condition. E) Timecourses 
averaged across all electrodes in each cluster. Clusters exhibit distinct response profiles (quantitatively described in 
Figure 5). F) Mean condition responses by cluster. Error bars reflect standard error. After averaging across time, 
response profiles are not as distinct by cluster (especially for Clusters 2 and 3), underscoring the importance of 
temporal information in elucidating this grouping of electrodes.  
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We then evaluated how stable these clusters were across trials and how robust they were to data 
loss. We found that the same clusters emerged when using only half of the trials in Dataset 1 
(either odd- or even-numbered trials): clusters derived from half of the data were significantly 
more similar to the clusters derived from the full dataset than would be expected by chance 
(ps<0.001 for all 3 clusters for each half of the data, evaluated against clustering solutions from 
permuted data, Methods, Figure S2A). The clusters were also robust to the number of electrodes 
used: clustering solutions derived from only a subset of the language-responsive electrodes 
(down to ~27%, ~32%, and ~69% of electrodes for clusters 1, 2, and 3, respectively) were 
significantly more similar to the clusters derived from all the electrodes than would be expected 
by chance (ps<0.05, Methods, Figure S2B). Although this result suggests that the reported 
clustering solution is robust to data loss, it also demonstrates that, relative to the other clusters, 
Cluster 3 is more strongly driven by individual electrodes (which is to be expected given that 
Cluster 3 has the fewest electrodes assigned to it, Figure 3B). In sum, the three response profiles 
discovered in Dataset 1 were stable across trials and robust to data loss. 
 
2. Response profiles reflect different sizes of temporal receptive windows 
 
The temporal dynamics of the neural responses across clusters suggested that the observed 
differences in the response profiles may reflect different ‘temporal receptive windows’ (TRWs). 
A TRW is a temporal equivalent of spatial receptive fields that corresponds to the amount of the 
preceding temporal context that affects the processing of the current input (e.g., Hasson et al., 
2008). More specifically, two features of the temporal dynamics of the neural responses pointed 
to distinct TRWs. The first is the difference in relative response magnitudes to the linguistic 
experimental conditions. A larger difference between sentences and word-lists (Cluster 1) implies 
a longer TRW as the response is strongly modulated by information that spans multiple words 
(i.e., combinatorial information present in sentences but not word-lists). Similarly, a smaller 
difference between sentences and word-lists and between word-lists and nonword-lists (Clusters 
2 and 3) implies a shorter TRW because the response is only modulated slightly by the addition 
of information that spans multiple words and single words, respectively. The second feature is 
the difference in the degree of ‘locking’ to individual word onsets, which manifests as oscillations 
at the rate of stimulus presentation, where stronger locking (Cluster 3) implies a shorter TRW 
given the sensitivity to information at the word level (or below). We therefore hypothesized that 
Cluster 1 was dominated by neural populations with the longest TRWs, Cluster 2 by neural 
populations with shorter TRWs, and Cluster 3 by neural populations with the shortest TRWs. 
 
To evaluate whether the response profiles that we uncovered indeed correspond to varying TRW 
sizes, as well as to quantitatively estimate the sizes of the TRWs, we turned to modelling. In 
particular, we simulated neural responses to the sentence condition by convolving a simplified 
stimulus train with a range of kernels that represent the size of the TRW (𝜎, Figure 4A, Methods). 
The kernels were constructed from gaussian curves with a standard deviation of 𝜎/2 truncated 
at +/- 1 standard deviation (capturing 2/3 of the area under the gaussian, Figure 4a, Methods), 
and 𝜎 varied from one third of a word to 8 words (the length of our stimuli), in increments of 
1/27th of a word (or (60Hz)—the highest resolution we were able to evaluate given the sampling 
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rate). The simulated neural responses exhibit a striking qualitative similarity to the observed 
response patterns (Figure 4A). We then computed—for every electrode—a correlation between 
each simulated response and the observed response. The TRW of an electrode was defined as 
the 𝜎 that yielded the highest correlation (Methods). 
 
The estimated TRW sizes showed a clear pattern of Cluster 1>2>3; the average 𝜎 values per 
cluster were ~6, ~4, and ~1 words for Clusters 1, 2, and 3, respectively (p-values comparing all 
pairs of clusters <0.0001, LME, Methods, Figure 4B, C, Table S5). Furthermore, in order to test 
whether the estimated values of 𝜎 depended on the stimulus presentation rate, which varied 
across participants, we calculated the average 𝜎 per cluster separately for the participants that 
chose a faster (n=3) vs. a slower (n=3) presentation rate. The estimated values of 𝜎	in number of 
words (as reported above) were invariant to the presentation rate (Figure S6). This invariance 
suggests that the TRW of language-responsive electrodes is information-, not time-, dependent. 
    

 
Figure 4 – Estimating the size of the temporal receptive window (TRW) of different electrodes. 
A) A model that simulates neural responses to the sentence condition as a convolution of a simplified stimulus train 
and gaussian kernels with varying widths. Top: Simplified stimulus train where peaks indicate a word/nonword 
onset, and sample kernels of varying temporal receptive window sizes (𝜎). The kernels were constructed from 
gaussian curves with a standard deviation of 𝜎/2 truncated at +/- 1 standard deviation (capturing 2/3 of the area 
under the gaussian, Methods) and normalized to a minimum of 0 and a maximum of 1. Bottom: The resulting 
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simulated neural signals for sample kernel widths, normalized to a minimum of 0 and a maximum of 1. B) Best TRW 
fit for all electrodes colored by cluster and sized by the reliability of the neural signal as estimated by correlating 
responses to odd and even trials (Figure 2D). The goodness of fit, or correlation between the simulated and observed 
neural signal (sentence condition only), is shown on the y-axis. C) Estimated TRW sizes across all electrodes (grey) 
and per cluster (red, green, and blue). Black vertical lines correspond to the mean window size and the white dots 
correspond to the median. “x” marks indicate outliers (more than 1.5 interquartile ranges above the upper quartile 
or less than 1.5 interquartile ranges below the lower quartile). Significance values are calculated using a linear mixed-
effects model (ps<0.001, LME, Methods). Together, B and C show that our model explains the observed neural 
signals well and that the clusters vary in the size of their TRWs, from a relatively long TRW (Cluster 1) to a relatively 
short one (Cluster 3). 
 
 
To further quantify the apparent differences in the response profiles, we performed two 
additional analyses (Methods). First, we examined how quickly the S condition diverges from the 
W condition (Figure 5A), and how quickly the W condition diverges from the N condition (Figure 
5B), using a binary linear classifier trained for each cluster separately using incrementally more 
of the timecourse (from one time bin to the entire timecourse, Methods). The average 
classification performance (across 20 unique instantiations of a 10-fold cross-validated binary 
classifier) revealed that electrodes in Cluster 1 reliably distinguish both S from W and W from N 
already in the earliest time bins. In contrast, electrodes in Cluster 2 reliably distinguish S from W 
and W from N starting at word positions 2-3 and onward, and electrodes in Cluster 3 do not 
reliably distinguish W from N in any continuous stretches of time and only distinguish S from W 
with access to nearly the entire timecourse. 
 
Second, we examined how strongly the neural signal exhibits ‘locking’ to individual 
word/nonword onsets by correlating the observed responses with a fitted sinusoidal stimulus 
train (Methods). This analysis revealed that—consistent with visual examination—electrodes in 
Cluster 3 show the strongest degree of stimulus locking, followed by electrodes in Cluster 2, with 
electrodes in Cluster 1 showing the weakest stimulus-related time-locking (Figure 5C, Table S1). 
This difference in the degree of stimulus locking was present across conditions, although the 
analysis additionally revealed a by-condition trend (Figure 5C) that did not reach significance 
(Table S1), with strongest stimulus locking in the S condition and weakest stimulus locking in the 
N condition for all three clusters (with no reliable cluster by condition interaction). These 
qualitative between-condition differences could be due to generally greater engagement with 
more language-like stimuli. 
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Figure 5 – Quantitative characterization of the three clusters in Dataset 1. A and B) Classifier 
performance by cluster as a function of the amount of timecourse included in training (Methods). Classifiers (n=20) 
were trained to discriminate sentence (S) and word-list (W) conditions (A) and word-list (W) and nonword-list (N) 
conditions (B). Significance stars (colored by cluster) reflect discriminability of conditions above chance level (0.50) 
using a one-tailed t-test (ps<0.05). Shaded regions reflect standard error. The responses to sentences and word-lists 
are most discriminable for electrodes in Cluster 1, whereas the responses to word-lists and nonword-lists are most 
discriminable for electrodes in Cluster 2. Responses to sentences and word-lists as well as nonword-lists cannot be 
discriminated for electrodes in Cluster 3 (until the classifier has access to the entire timecourse in the case of 
discriminating sentences and word-lists).  C) Correlation of fitted stimulus train with timecourse of electrodes by 
cluster and by condition (Methods). Error bars reflect standard error. Electrodes in Cluster 3 are the most locked to 
word/nonword presentation while electrodes in Cluster 1 are the least locked to word/nonword presentation. 
 
 
These differences among the clusters in their ability to discriminate between conditions and their 
degree of stimulus locking provide additional evidence in support of the idea that the response 
profiles differ in the size of the TRW. 
 
 
3. Clusters 1 and 2 are distributed across the language network, whereas cluster 3 exhibits a 
posterior bias. 
 
We tested for differences in the anatomical distribution of the electrodes that belong to the 3 
clusters in Dataset 1. We excluded from this analysis right-hemisphere (RH) electrodes because 
only 4 RH electrodes passed the language selectivity criterion (S>N). We therefore focused on 
the y (posterior-anterior) and z (inferior-superior) directions within the left hemisphere. 
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Electrodes from both Cluster 1 and 2 were distributed across the temporal and frontal language 
regions (Figure 6). When examining all electrodes together or only the frontal electrodes, the 
MNI-coordinates of Clusters 1 and 2 did not significantly differ in either of the two tested 
directions (ps>0.05, LME, Figure 6C, D, Methods, Table S2). However, when examining only the 
electrodes located in the temporal lobe, electrodes from Cluster 1 were more inferior relative to 
Cluster 2 (p<0.001, LME, Methods, Figure 6E, Table S2), reflecting a large proportion of 
electrodes belonging to Cluster 1 on the ventral temporal surface. 
 
Electrodes from Cluster 3 were significantly more posterior than those in Clusters 1 and 2 (Cluster 
3 vs. 1: p<0.001, LME, Methods, Figure 6C, Table S2; Cluster 3 vs. 2: p<0.01, LME, Methods, Figure 
6C, Table S2). This trend was also evident when examining the temporal and frontal electrodes 
separately, but the difference only reached significance for the temporal electrodes (Figure 6D, 
E). 
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Figure 6 – Anatomical distribution of the clusters in Dataset 1. A) Anatomical distribution of language-
responsive electrodes in Dataset 1 across all participants in MNI space, colored by cluster. B) Anatomical distribution 
of language-responsive electrodes in participant-specific space. C-E) Violin plots of MNI coordinate values for the 3 
clusters, where plotted points represent the mean of all coordinate values for a given participant and cluster. The 
mean is plotted with a black horizontal line, and the median is shown with a white circle. Significance values are 
computed using a linear mixed-effects model (LME, Methods). Cluster 3 exhibits a posterior bias (more negative Y 
coordinate) relative to Cluster 1 and 2 when modeled using all language electrodes (C). When electrodes are 
modeled separately by lobe, Cluster 1 shows a significant inferior bias (more negative Z coordinate) relative to 
Cluster 2 in the temporal lobe (E). 
 
 
4. Clusters 1 and 3 replicate in Dataset 2 and cluster 2 partly replicates. 
 
We then asked whether the same clusters would emerge in a second, independent dataset with 
new participants and linguistic materials (Dataset 2; 16 participants; 362 language-responsive 
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electrodes; mostly depth electrodes, Figure 7A). Participants in Dataset 2 only saw two of the 
four conditions presented to participants in Dataset 1 (sentences (S) and nonword-lists (N), but 
not word-lists (W) and Jabberwocky sentences (J)); therefore, we first re-clustered the electrodes 
from Dataset 1 using only the responses to the S and N conditions. 
 
The optimal number of clusters when only the S and N conditions were used from Dataset 1 was 
again k=3, and the cluster centers exhibited striking qualitative similarity to those of the clusters 
derived using the data from all four conditions (Figure S3). In line with this similarity, ~80% of 
electrodes were assigned to the same cluster across these two clustering solutions. This result 
suggests that it is possible to recover the 3 response profiles from only responses to sentences 
and nonword-lists. However, the analysis where varying subsets of electrodes were removed 
(Figure S3G) revealed that Cluster 2 was less robust than Clusters 1 and 3 to electrode loss when 
only the S and N conditions were used (compare the green curve in Figure S2B to the green curve 
in Figure S3G). This pattern suggests that responses to the word-list (W) and Jabberwocky 
sentence (J) conditions may be especially important for differentiating Cluster 2 from the other 
response profiles. 
 
We next clustered the electrodes in Dataset 2 using the same approach as for Dataset 1 (k-
medoids algorithm, correlation-based distance). The optimal number of clusters in Dataset 2 was 
k=2 based on the elbow method (Figure S4A), and the resulting clusters were reliably similar to 
Clusters 1 and 3 from Dataset 1 (ps<0.001 for both clusters, Figure S4C). However, to test 
whether Cluster 2 could emerge from Dataset 2, we also clustered Dataset 2 enforcing k=3. When 
the electrodes in Dataset 2 were clustered into three sets, the same two cluster centers as in the 
case of k=2 were again apparent and showed reliable similarity to Clusters 1 and 3 in Dataset 1 
(p<0.001 and p<0.05, respectively, Figure 7G, I). The third cluster qualitatively resembled Cluster 
2 from Dataset 1 (an initial build-up of activity followed by a plateau (S condition) or decay (N 
condition); Figure 7G), but the resemblance was not statistically reliable. This result may be, in 
part, attributable to i) the lower data quality of Dataset 2 compared to Dataset 1 (compare Figure 
7B vs. 7C); and ii) the greater sparsity of coverage due to the prevalence of depth electrodes. 
Additionally, see Figure S5 (and Table S3 and S4) for an analysis of the anatomical trends in 
Dataset 2 which showed weak, but not reliable, differences between Clusters 1 and 3. 
 
We then estimated the temporal receptive window (TRW) size (as in Section 2 above) for each 
electrode in Dataset 2. Clusters 1 and 3 in Dataset 2 (which replicated the findings from Dataset 
1 in terms of their profiles) are best described by TRWs of ~4.5 and ~1, respectively (Figure S7A, 
B), similar to Dataset 1. 
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Figure 7 – Dataset 2 k-medoids clustering results (k=3). A) The locations of language-responsive (n=362, red; 
Methods) and non-language-responsive (n=2,017, black) electrodes across the sixteen participants in Dataset 2 (both 
surface and depth electrode were implanted). Language-responsive electrodes were found across the cortex, in both 
the left and right hemispheres (Table 2). B and C) Response reliability across odd and even trials (based on a 
correlation of mean responses) for language-responsive and non language-responsive electrodes (as in Figure 2D). 
Language-responsive electrodes exhibit more reliable responses to linguistic stimuli than non language-responsive 
electrodes for both Dataset 1 (S+N conditions only, B) and Dataset 2 (C), however, the responses of language 
electrodes are less reliable in Dataset 2 than Dataset 1.  D) Clustering mean electrode responses (S+N) in Dataset 2 
using k-medoids (k=3) with a correlation-based distance. Shading of the data matrix reflects normalized high-gamma 
power (70-150Hz). E) Electrodes visualized on their first two principal components, colored by cluster.  F and G) 
Average timecourse by cluster from Dataset 1 when using only S and N conditions (F; see Figure S2) and from Dataset 
2 (G). H) Mean condition responses by cluster in Dataset 2. Error bars reflect standard error. Again, after averaging 
across time, response profiles are not as distinct by cluster, underscoring the importance of temporal information 
in elucidating this grouping of electrodes. I) Evaluation of clusters from Dataset 1 (clustering with S and N conditions 
only) against clusters from Dataset 2. Clusters 1 and 3 from Dataset 1 replicate to Dataset 2 (p<0.001 and p<0.05, 
respectively; evaluated against clustering solutions when trials are shuffled; Methods), and although Cluster 2 
demonstrates some qualitative similarity across the two datasets, this similarity is not statistically reliable.  
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Discussion  
 
The nature of the neural computations that support our ability to extract meaning from linguistic 
input remains an important open question in the field of language research. Here, we leveraged 
the high temporal and spatial resolution of human intracranial recordings to probe the fine 
temporal dynamics and the spatial distribution of language-responsive electrodes. We uncovered 
three temporal profiles of response during the processing of sentences and linguistically 
degraded conditions like lists of words or nonwords. We suggest that these profiles reflect 
different sizes of the temporal receptive window (TRW)—the amount of temporal context that 
affects the processing of the current input. Further, we found that electrodes that exhibit these 
response profiles do not co-localize to the same parts of the language network, instead 
manifesting in a ‘salt and pepper’ pattern across both frontal and temporal cortex. Below, we 
contextualize these results with respect to prior empirical work and discuss their implications for 
our understanding of human language processing. 
 
Three temporal profiles characterize language-responsive electrodes 
 
In the present study, we used a clustering approach to group intracranial electrodes by their 
responses to four types of language stimuli: sentences (S), lists of unconnected words (W), 
Jabberwocky sentences (where content words are replaced with pronounceable nonwords; J), 
and lists of nonwords (N). We uncovered three response profiles. One set of electrodes (~52% of 
the language-responsive electrodes) showed a slow increase (build-up) of neural activity across 
the words in the sentence, and much lower activity for the three linguistically degraded 
conditions. Another set of electrodes (~38% of the language-responsive electrodes) showed a 
faster build-up across the words in the sentence, plateauing at ~3 words into the sentence and 
exhibiting some degree of ‘locking’ to individual word/nonword onsets; the response during the 
first three words resembled that for the word-list condition, but then the response decayed; the 
remaining two conditions showed overall lower responses but a similar shape as the word-list 
condition (initial rise followed by a decay). Finally, the remaining ~10% of the electrodes showed 
no build-up of activity and a strong degree of locking to word/nonword onsets across all 
conditions. Clusters 1 and 3 replicated in an independent dataset that only included two of the 
four linguistic conditions (sentences and nonwords); that dataset also contained a cluster that 
was qualitatively similar to Cluster 2 in Dataset 1. 
 
Importantly, these findings provide evidence for functional heterogeneity within the language 
network. The experimental design adopted in the current study has traditionally been used as a 
way to tease apart neural responses to word meanings (present in sentences and lists of words, 
but not in Jabberwocky sentences and lists of nonwords) and syntactic structure (present in 
sentences and, under some views of syntax, in Jabberwocky sentences, but not in lists of 
words/nonwords; Fedorenko et al., 2010, 2012, 2016; for earlier uses of this paradigm, see 
Mazoyer et al., 1993; Friederici et al., 2000; Humphries et al., 2001; Vandenberghe et al., 2002; 
for another variant, see Bautista and Wilson, 2016). As measured with fMRI, all areas of the 
language network show a profile that suggests sensitivity to both word meanings and syntactic 
structure: the response is strongest to sentences, lower to word-lists and Jabberwocky 
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sentences, and lowest to nonword-lists (e.g., Fedorenko et al., 2010; Bedny et al., 2011; Shain et 
al., 2021; see Dick et al., 2001 for earlier arguments against the lexical/syntactic dissociation). 
Using a similar design in an intracranial recording study, Fedorenko et al. (2016) showed that the 
overall pattern of response to sentences, word-lists, Jabberwocky sentences, and nonword-lists 
mirrors that observed in fMRI studies, with no electrodes showing selective responses to lexical 
or syntactic processing. However, here we show that in spite of strong integration between 
lexical and syntactic processing, neural populations within the language network do differ 
functionally, although along a different dimension. 
 
Fedorenko et al. (2016) reported a temporal profile—present in a subset of electrodes—whereby 
high gamma power response increases over the course of the sentence but not in other 
conditions (replicated by Nelson et al., 2017), which they interpreted as indexing the process of 
constructing a sentence-level meaning. Here, we investigated the temporal profiles of language-
responsive electrodes in a more comprehensive manner. We identified language-responsive 
electrodes in the same way as in Fedorenko et al. (2016; building on fMRI work in Fedorenko et 
al., 2010), as responding more strongly to sentences than nonword-lists. However, we used a 
more liberal threshold to include as many potentially relevant electrodes as possible and we 
leveraged the fine-grained temporal information in the signal by considering the full timecourses 
(cf. averaging high gamma power in each word/nonword as in Fedorenko et al., 2016). In this 
way, we found that the build-up electrodes reported in Fedorenko et al. (2016) likely represent 
a mix of electrodes. The timecourse of response to the S condition in Fedorenko et al. is most 
similar to that in Cluster 1 here. However, the fact that in Fedorenko et al. a reliable S>W>J>N 
profile was present suggests a contribution from Cluster 2 electrodes. In particular, in our study, 
Cluster 1 electrodes show a pattern of S>W>=J=N but Cluster 2 electrodes show the S>W>J>N 
pattern, as in Fedorenko et al. As such, our analyses replicate the previous finding of the build-
up effect (including in a new, larger dataset: Dataset 2), but identify two functionally distinct 
build-up profiles and uncover a third profile that does not show build-up of activity over time. 
 
Different electrodes vary in the size of their temporal receptive windows 
 
What do the different temporal response profiles reflect? A construct that has been steadily 
gaining popularity in human neuroscience is that of temporal receptive windows (TRWs). TRWs 
denote the amount of the preceding context that a given neural unit is sensitive to or integrates 
over (e.g., Hasson et al., 2008; Lerner et al., 2011; Norman-Haignere et al., 2022). Past fMRI 
studies have shown that the TRW of the language system is somewhere between a word and a 
sentence (e.g., Lerner et al., 2011; Jacoby and Fedorenko, 2020; Blank and Fedorenko, 2020; Jain 
et al., 2020; Caucheteux et al., 2023), although some recent work suggests that the language 
network may even be sensitive to sub-lexical regularities (Regev et al., 2021). Here, we argue that 
the observed response profiles correspond to neural populations within the language network 
that integrate information over different timescales, from sub-lexical units and single words 
(Cluster 3) to short phrases (Cluster 2) to longer phrases/sentences (Cluster 1). 
 
We formalized this intuition through a simple model wherein we convolved a stimulus train with 
kernels of different widths (from 1/3 of a word to 8 words). This procedure produced simulated 
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neural signals that exhibit striking similarity to our observed timecourses for the sentence 
condition (Figure 5A). We defined an electrode’s TRW as the kernel width that produced the 
simulated timecourse that correlated most strongly with the electrode’s actual timecourse. This 
analysis suggests that the average TRW of the Cluster 3 electrodes is the shortest (~1 word), 
followed by the TRW of the Cluster 2 electrodes (~4 words), followed by the TRW of the Cluster 
1 electrodes (~6 words, Figure 5B, C). Our modeling results thus indicate that TRW size is an 
important dimension of variation for the neural populations that comprise the language network. 
 
Two other features of the response profiles support the idea that these response profiles 
correspond to different TRWs. The first has to do with how well different sets of electrodes 
discriminate among linguistic conditions based on response magnitude. In particular, an 
electrode that only processes information over the span of ~a single word (or less than a word) 
should show little sensitivity to whether nearby words can be composed into phrases, which 
should translate into weak ability to discriminate between the S and W conditions across the 
stimulus. This is the pattern we see for electrodes in Cluster 3 (Figure 5A): these electrodes do 
not reliably discriminate between the S and W conditions, suggesting that these electrodes do 
not participate in combining words into larger units. In contrast, an electrode that processes 
information over spans of multiple words should show sensitivity to the composability of nearby 
words, and thus should be able to discriminate between S and W. This is the pattern we see for 
electrodes in Clusters 1 and 2: these electrodes reliably discriminate between the S and W 
conditions. 
 
Furthermore, electrodes that integrate information over longer spans should be more sensitive 
to whether or not a word can start a phrase or a sentence because such electrodes will have 
access to more of the preceding context (e.g., the end of the preceding trial, which is a clear clue 
that the next element should start a stimulus). Electrodes in Cluster 1 can already discriminate 
between the sentence and word-list conditions at the first word of the stimulus, presumably 
because the words that occur in the first position of the sentence trials can always (by definition) 
start a phrase/sentence, but words that occur in the first position of the word-list trials often 
cannot. For example, consider the sample word-list trials in Figure 2B: one starts with “RAIN”, 
which could continue as a sentence (“Rain is sorely needed” or “Rain gear is critical in this 
weather”) but another starts with “STOOD”, which is unlikely to start a phrase/sentence. 
Electrodes in Cluster 2 cannot discriminate between the sentence and word-list conditions until 
the second or third word, which may suggest that this length of input is needed to accumulate 
evidence that the words in word-list trials cannot be combined (after which point the gamma 
response declines; Figures 3 and 5). For example, in a string like “RAIN THE” it is quite clear at 
“the” that the words are probably not combinable, but in a word-list string like “STOOD THE”, it 
may take until the third word (“TIED”) to figure out that the words cannot be combined because 
“STOOD THE" is compatible with continuations like “stood the test of time” or “stood the watch”. 
 
The second feature of the clusters that supports their differentiation in terms of the size of their 
TRWs is the degree to which their responses are locked to individual word/nonwords in the 
stimulus. An electrode that only processes information over the span of a single word should 
exhibit modulation at the rate of stimulus presentation, reflecting the momentary stimulus-
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related fluctuations. On the other hand, an electrode that processes information over spans of 
multiple words should exhibit a response that reflects a more smoothed version of the stimulus 
train, with no momentary stimulus-related fluctuations. Indeed, the three clusters differ 
significantly in their degree of locking. Cluster 3 was the most strongly locked, followed by Cluster 
2, with Cluster 1 showing the weakest amount of locking (Figure 5C). 
 
As discussed earlier, prior studies have characterized the TRW of the language network as falling 
between a word and a sentence (e.g., Lerner et al., 2011; Jacoby and Fedorenko, 2020; Blank and 
Fedorenko, 2020; Shain et al., 2021). Here, we demonstrate the existence of several distinct 
TRWs in this range in language-responsive neural populations. The use of an extensively validated 
functional localizer (Fedorenko et al., 2010) to identify these language-responsive populations 
ensures that the observed differences reflect heterogeneity within the language system proper 
rather than between the language areas and nearby functionally distinct brain regions, like 
speech areas (e.g., Overath et al., 2015) or higher-level cognitive networks (e.g., Braga et al., 
2020; Shain, Paunov, Chen et al., 2022).  
 
It is important to note that the division of labor within the language system in terms of the scale 
of temporal integration is largely, though not fully, orthogonal to the putative dissociation 
between lexical and syntactic processing (discussed in the Introduction and above). In particular, 
electrodes that reliably discriminate between the word-list and nonword-list conditions (i.e., 
electrodes in Clusters 1 and 2; Figure 5B)—and are thus sensitive to meanings of individual 
words—all participate in combinatorial processing, integrating across words over shorter (Cluster 
2) and longer (Cluster 1) spans. And neither electrodes in Cluster 2 nor in Cluster 1 show 
responses to linguistic structure that is independent of word meaning processing (as would be 
evidenced by similar profiles for sentences and Jabberwocky sentences). These results provide 
further support for strong integration between the processing of word meanings and phrase-
structure building as has been argued in past fMRI work (e.g., Fedorenko et al., 2020). This 
integration likely reflects the fact that many/most inter-word dependencies in natural language 
are highly dependent on particular words (cf. on broad syntactic categories like nouns and verbs; 
e.g., Bybee, 1999, 2013; Goldberg, 2003; Jackendoff, 2007; Arnon and Snider, 2010; Jackendoff 
and Audring, 2020). 
 
Discrete clusters versus a gradient of TRWs? 
 
Do the observed response profiles reflect categorically distinct clusters that integrate 
information over different timescales or is the underlying structure of language-selective 
responses in the brain best described by a continuum of TRWs with no sharp boundaries or 
groupings of response types? Although we do not rule out the possibility of a TRW continuum, 
we highlight two aspects of the data that point to the discrete cluster architecture. First, the 
electrodes that exhibit the most reliable responses to linguistic input (as estimated by correlating 
responses to odd and even trials) are the most clearly separable in a low dimensional space 
(Figure 3C). That is, the electrodes that contribute to the appearance of a continuum tend to be 
more noisy. And second, the distribution (or density) of electrode TRWs (Figure 4C) is not uniform 
as we would expect if the electrodes indeed fall along a continuum. Instead, we observe 
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peaks/swells in the distribution (e.g., many individual electrodes are assigned a TRW of 8 words, 
very few are assigned a TRW of 5-6 words). This non-uniformity may suggest that the existence 
of neural units sensitive to information chunks of distinct and specific size is critical for efficient 
extraction of meaning from word sequences.  
 
An issue that may bear on whether the language processing architecture is best characterized by 
a few neural populations each with a discrete TRW or by a continuum of TRWs has to do with the 
units in which we measure TRWs. We have so far discussed TRWs in terms of the number of 
words. However, TRWs may instead be bounded by the number of bits of information, which 
depends on how predictable words are in context (e.g., Shannon, 1949) and strongly affects 
behavioral (e.g., Levy, 2008) and neural (e.g., Shain, Blank et al., 2020) processing. Future work 
should consider multiple construals of the units in which TRWs are measured. 
 
The distributed nature of language processing 
 
There is a long history in language neuroscience to try to separate the process of language 
comprehension into stages that are not only temporally distinct but are also carried out in 
spatially distinct brain areas. At some level, this kind of architecture indeed characterizes 
language processing. In particular, clear separation exists between the language-processing 
system (Fedorenko et al., 2011) and both a) lower-level perceptual areas, like the speech-
perception areas (Norman-Haignere et al., 2015; Overath et al., 2015) or the visual word-form 
area (e.g., Baker et al., 2007; Hamamé et al., 2013; Saygin et al., 2016) and b) putative higher-
level areas (like the Default network; Buckner & DiNicola, 2019; or the Theory of Mind network; 
Saxe et al., 2006) that may carry out further processing on the meaning representations extracted 
from language (e.g., Baldassano et al., 2017; 2018). However, finding spatial sub-divisions within 
the language-selective network has proven challenging (e.g., Fedorenko et al., 2010, 2020; 
Bautista & Wilson, 2016; Regev et al., 2021). 
 
The current work demonstrates that although there exist functional differences within the 
language network, these functionally distinct mechanisms are not spatially clustered and are 
instead distributed in an interleaved fashion across the language network. The latter explains 
why most past fMRI work could not discover this functional heterogeneity (cf. Fedorenko et al., 
2012 for implied functional heterogeneity given the information present in multivariate patterns 
of fMRI response; and see Jain et al., 2020 for evidence of voxel-level heterogeneity with respect 
to TRWs as discovered in an encoding approach with artificial neural network (ANN) language 
models). 
 
Future directions 
 
The current findings lay the foundation for several exciting future research avenues. First, the 
size of a neural unit’s temporal receptive window (TRW) should determine its sensitivity to 
different linguistic features. For instance, electrodes with short TRWs, but not with longer ones 
should be sensitive to features like word length and lexical frequency; in contrast, only electrodes 
with long TRWs should be sensitive to the difficulty of forming non-local dependencies. 
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Furthermore, our TRW modeling was performed only on the neural responses to the sentence 
condition and not the linguistically degraded conditions. Future work should incorporate detailed 
linguistic analysis of the input to arrive at a more complete neural model of language 
comprehension. 
 
Second, artificial neural network (ANN) language models could be leveraged to better understand 
the constraints on language processing architecture. For example, do successful language 
architectures require particular proportions of units with different TRWs or particular 
distributions of such units within and/or across model layers? In Dataset 1, we found fewest 
electrodes belonging to Cluster 3 (shortest TRW), more electrodes belonging to Cluster 2 
(intermediate TRW), and the majority of electrodes belonging to Cluster 1 (longest TRW). These 
proportions align with the idea that compositional semantic space is highly multi-dimensional, 
but word-form information can be represented in a relatively low-dimensional space (e.g., 
Mollica and Piantadosi, 2019). However, the proportions can also be affected by biases in where 
intracranial electrodes tend to be implanted, so investigating these questions in ANNs, where we 
can probe all units in the network and have the freedom to alter the architecture in various ways, 
may yield insights that cannot be gained from human brains at least with the current 
experimental tools available. 
 
And third, much recent evidence suggests that human comprehension mechanisms are robust to 
noise in the input (e.g., Levy, 2008; Gibson et al., 2013; Gibson et al., 2017; Keshev & Meltzer-
Asscher, 2021; Ryskin et al., 2018, 2021; see Gibson et al., 2019 for a review). This property of 
the language processing system may make it desirable for TRWs to be somewhat flexible, so as 
to allow for the possibility of revising interpretation with incoming input. Understanding how this 
feat is accomplished—for example, whether any given neural population’s TRW is not strictly 
fixed or whether this flexibility is accomplished by multiple neural populations working 
together—will require a deeper understanding of the dynamics of information processing in the 
neural populations with different TRWs and careful manipulations of stimulus properties. 
 
A key limitation of this work is that we have focused on the similarity of temporal dynamics across 
sentences (and other linguistic stimuli) regardless of their structure and meaning. However, in 
order for the language system to extract meaning from the signal, language-responsive 
electrodes have to represent specific linguistic content. Advances in the recording technologies 
available for human neuroscience (e.g., Paulk et al., 2022), combined with the Increasing use of 
ANN language models for understanding the human language system (Toneva and Wehbe, 2019; 
Jain et al., 2020; Schrimpf et al., 2021; Goldstein et al., 2022; Caucheteux & King, 2022) may allow 
us to soon go beyond this coarse-level functional differentiation and to start uncovering the 
process of building particular linguistic meanings. 
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Methods 

Participants 
Dataset 1 (also used in Fedorenko et al., 2016): Electrophysiological data were recorded from 
intracranial electrodes in 6 participants (5 female, aged 18–29 years) with intractable epilepsy. 
These participants underwent temporary implantation of subdural electrode arrays at Albany 
Medical Center to localize the epileptogenic zones and to delineate it from eloquent cortical 
areas before brain resection. All participants gave informed written consent to participate in the 
study, which was approved by the Institutional Review Board of Albany Medical Center. One 
further participant was tested but excluded from analyses because of difficulties in performing 
the task (i.e., pressing multiple keys, looking away from the screen) during the first five runs. 
After the first five runs, the participant required a long break during which a seizure occurred. 
 
Dataset 2: Electrophysiological data were recorded from intracranial electrodes in 16 participants 
(4 female, aged 21-66 years) with intractable epilepsy. These participants underwent temporary 
implantation of subdural electrode arrays and depth electrodes to localize the epileptogenic 
zones before brain resection at one of four sites: Albany Medical Center (AMC), Barnes-Jewish 
Hospital (BJH), Mayo Clinic Jacksonville (MCJ), and St. Louis Children’s Hospital (SLCH). All 
participants gave informed written consent to participate in the study, which was approved by 
the Institutional Review Board at each relevant site. Two further participants were tested but 
excluded from analyses due to the lack of any language-responsive electrodes (see Language-
Responsive Electrode Selection). 
 
Data Collection 
Dataset 1: The implanted electrode grids consisted of platinum-iridium electrodes that were 4 
mm in diameter (2.3–3 mm exposed) and spaced with an inter-electrode distance of 0.6 or 1 cm. 
The total numbers of implanted grid/strip electrodes were 120, 128, 98, 134, 98, and 36 for the 
six participants, respectively (Table 1). Electrodes were implanted in the left hemisphere for all 
participants except P6, who had bilateral coverage (16 left hemisphere electrodes). Signals were 
digitized at 1,200 Hz. 
 
Dataset 2: The implanted electrode grids and depth electrodes consisted of platinum-iridium 
electrodes. Implanted grid contacts were spaced at 0.6 or 1cm (2.3–3 mm exposed), while SEEG 
leads were spaced 3.5 - 5 mm depending on the trajectory length, with 2 mm exposed. The total 
numbers of implanted electrodes by participant can be found in Table 2 (average=167 electrodes; 
st. dev.=51; range 92-234), along with the frequencies at which the signals were digitized. 
Electrodes were implanted in only the left hemisphere for 2 participants, in only the right 
hemisphere for 2 participants, and bilaterally for 12 participants (Table 2). All participants, 
regardless of the lateralization of their coverage, were included in all analyses. 
 
For both datasets, recordings were synchronized with stimulus presentation and stored using the 
BCI2000 software platform (Schalk et al., 2004).  
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Cortical Mapping  
Electrode locations were obtained from post-implantation computerized tomography (CT) 
imaging and co-registered with the 3D surface model of each participant’s cortex—created from 
the preoperative anatomical MRI image—using the VERA software suite (Adamek et al., 2022). 
Electrode locations were then transformed to MNI space within VERA via nonlinear co-
registration of the subjects’ skull-stripped anatomical scan and the skull-stripped MNI152 
Freesurfer template using ANTs (Avants, Epstein, Grossman, & Gee, 2008).  
 
Preprocessing and Extraction of Signal Envelope 
Neural recordings were collected and saved in separate data files by run (see Experiment and 
Tables 1-2), and all preprocessing procedures were applied within data files to avoid inducing 
artifacts around recording breaks. 
 
First, the ECoG/sEEG recordings were high-pass filtered at the frequency of 0.5 Hz, and line noise 
was removed using IIR notch filters at 60, 120, 180, and 240 Hz. The following electrodes 
(electrodes; we use these terms interchangeably) were excluded from analysis: a) ground, b) 
reference, and c) those that were not ECoG or sEEG contacts (e.g., microphone electrodes, trigger 
electrodes, scalp electroencephalography (EEG) electrodes, EKG electrodes), as well as d) those 
with significant line noise, defined as electrodes with line noise greater than 5 standard 
deviations above other electrodes, e) those with large artifacts identified through visual 
inspection, and, for all but four participants, f) those that had a significant number of interictal 
discharges identified using an automated procedure (Janca et al., 2015). (For 4 participants—P3 
in Dataset 1 and P15, P17, and P21 in Dataset 2—electrodes that were identified as having a 
significant number of interictal discharges were not excluded from analyses because more than 
1/3 of each of these participants’ electrodes fit this criterion.) These exclusion criteria left 108, 
115, 92, 106, 93, and 36 electrodes for analysis for the 6 participants in Dataset 1 (Table 1) and 
between 76 and 228 electrodes for the 16 participants in Dataset 2 (Table 2). 
 
Next, the common average reference (from all electrodes connected to the same amplifier) was 
removed for each timepoint separately. The signal in the high gamma frequency band (70 Hz–
150 Hz) was then extracted by taking the absolute value of the Hilbert transform of the signal 
extracted from 8 gaussian filters (center frequencies: 73, 79.5, 87.8, 96.9, 107, 118.1, 130.4, and 
144; standard deviations (std): 4.68, 4.92, 5.17, 5.43, 5.7, 5.99, 6.3, and 6.62, respectively, as in 
e.g., Dichter et al., 2018). The resulting envelopes from each of the Gaussian filters were averaged 
into one high gamma envelope. We focus on the high gamma frequency range because this 
component of the signal has been shown to track neural activity most closely (e.g., Janca et al., 
2015). Linear interpolation was used to remove data points whose magnitude was more than 5 
times the 90th percentile of all magnitudes (Norman-Haignere et al., 2022), and we downsampled 
the signal by a factor of 4. For all data analysis basic Matlab (version 2021a) functions were used. 
 
Finally, the data were z-scored and normalized to a min/max value of 0/1 to allow for 
comparisons across electrodes, and the signal was downsampled further to 60 Hz (regardless of 
the participant’s native sampling frequency) to reduce noise and standardize the sampling 
frequency across participants. For the participants who performed a slower version of the 
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paradigm (e.g., words presented for 700 ms each; see Experiment), the signal was time-warped 
to a faster rate (words presented for 450 ms each) so that timecourses could be compared across 
subjects. 
 
Experiment 
Dataset 1: In an event-related design, participants read sentences, lists of words, Jabberwocky 
sentences, and lists of nonwords. The materials were adapted from Fedorenko et al. (2010; 
Experiment 2). Each event (trial) consisted of eight words/nonwords, presented one at a time at 
the center of the screen. At the end of each sequence, a memory probe was presented (a word 
in the sentence and word-list conditions, and a nonword in the Jabberwocky and nonword-list 
conditions) and participants had to decide whether the probe appeared in the preceding 
sequence by pressing one of two buttons. Two different presentation rates were used: P1, P5, 
and P6 viewed each word/nonword for 450 ms (fast-timing), and P2, P3, and P4 viewed each 
word/nonword for 700 ms (slow-timing). The presentation speed was determined before the 
experiment based on the participant’s preference. After the last word/nonword in the sequence, 
a fixation cross was presented for 250 ms, followed by the probe item (1,400-ms fast-timing, 
1,900 ms slow-timing), and a post-probe fixation (250 ms). Behavioral responses were continually 
recorded. After each trial, a fixation cross was presented for a variable amount of time, semi-
randomly selected from a range of durations from 0 to 11,000 ms, to obtain a low-level baseline 
for neural activity. 

Trials were grouped into runs to give participants short breaks throughout the experiment. In the 
fast-timing version of the experiment, each run included eight trials per condition and lasted 220 
s, and in the slow-timing version, each run included six trials per condition and lasted 264 s. The 
total amount of intertrial fixation in each run was 44 s for the fast-timing version and 72 s for the 
slow-timing version. All participants completed 10 runs of the experiment, for a total of 80 trials 
per condition in the fast-timing version and 60 trials per condition in the slow-timing version.	 

Dataset 2: In an event-related design that was similar to the one used in Dataset 1, participants 
read sentences and lists of nonwords (the other two conditions—lists of words and Jabberwocky 
sentences—were not included). The materials were adapted from a version of the language 
localizer in use in the Fedorenko lab (e.g., Malik-Moraleda, Ayyash et al., 2022). Each event (trial) 
consisted of twelve words/nonwords, presented one at a time at the center of the screen. At the 
end of each sequence, a memory probe was presented (a word in the sentence condition and a 
nonword in the nonword-list condition) and participants had to decide whether the probe 
appeared in the preceding sequence by pressing one of two buttons. Two presentation rates 
were used: 600 ms per word/nonword (medium-timing) and 750 ms per word/nonword (slow-
timing; see Table 2 for a description of the presentation rates by participant). The presentation 
speed was determined before the experiment based on the participant’s preference. After the 
last word/nonword in the sequence, a fixation cross was presented for 400 ms, followed by the 
probe item (1,000 ms for both fast- and slow-timing), and a post-probe fixation (600 ms). 
Behavioral responses were continually recorded. After each trial, a fixation cross was presented 
for a variable amount of time, semi-randomly selected from a range of durations from 0 to 6,000 
ms. 
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Trials were grouped into runs to give participants short breaks throughout the experiment. In the 
medium-timing version of the experiment, each run included 36 trials per condition and lasted 
~898 s, and in the slow-timing version, each run included 24 trials per condition and lasted 692 
s. The total amount of intertrial fixation in each run was 216 s for the medium-timing version and 
144 s for the slowest-timing version. One participant (P7) saw a modified slow-timing version of 
the paradigm where only 48 of the full 72 items per condition were shown. 13 participants 
completed 2 runs of the experiment (all saw the medium-timing version, 72 trials per condition), 
2 participants completed 3 runs of the experiment (one saw the slow-timing version, 72 trials per 
condition; and the other saw the modified slow-timing version, 48 trials per condition), and 1 
participant completed 1 run of the experiment (medium-timing version, 36 trials per condition, 
Table 2). 

For all clustering analyses, only the first eight words/nonwords of the stimulus were used to 
ensure that the length of the timecourses being analyzed was the same across Dataset 1 and 2.  

 
Language-Responsive Electrode Selection 
In both datasets, we identified language-responsive electrodes as electrodes that respond 
significantly more (on average, across trials) to sentences (the S condition) than to perceptually 
similar but linguistically uninformative (i.e., meaningless and unstructured) nonword sequences 
(the N condition). First, the envelope of the high-gamma signal was averaged across 
word/nonword positions (8 positions in the experiment used in Dataset 1, and 12 positions in the 
experiment used in Dataset 2) to construct an ‘observed’ response vector for each electrode (1 x 
nTrialsS + nTrialsN; the number of trials, across the S and N conditions, varied by participant 
between 72 and 160). The observed response vector was then correlated (using Spearman’s 
correlation) with an ‘idealized’ language response vector, where sentence trials were assigned a 
value of 1 and nonword trials—a value of -1. The values in the ideal response vector were then 
randomly permuted without replacement and a new correlation was computed. This process was 
repeated 10,000 times, for each electrode separately, to construct a null distribution (with 
shuffled labels) relative to which the true correlation between the observed values and the 
‘idealized’ values could be evaluated. Electrodes were determined to be language-responsive if 
the observed vs. idealized correlation was greater than 95% of the correlations computed using 
the permuted idealized response vectors (equivalent to p < 0.05). (We chose a liberal significance 
threshold in order to maximize the number of electrodes to be included in the critical analyses, 
and to increase the chances of discovering distinct response profiles.) The majority of the 
language-responsive electrodes (98.3% in Dataset 1, 53.9% in Dataset 2) fell in the left 
hemisphere, but we use electrodes across both hemispheres in all analyses (see e.g., Lipkin et al., 
2022 for evidence of a robust right-hemisphere component of the language network in a dataset 
of >800 participants). 
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Participants Age Sex Site ECoG 
or 
sEEG 

Language-
responsive 
electrodes 
(S>N) 

Total clean 
electrodes 

Total 
electrodes 

Native 
sampling 
freq (Hz) 

Elec 
per  
amp 
 

Runs Pres. rate 
(per word) 

Trials 
per 
cond 

Participant 1 29 F AMC ECoG 62 (0 RH) 108 (0 RH) 120 (0 RH) 1200 16 10 450ms 80 
Participant 2 25 F AMC ECoG 17 (0 RH) 115 (0 RH) 128 (0 RH) 1200 16 10 700ms 60 
Participant 3 18 F AMC ECoG 17 (0 RH) 92 (0 RH) 98 (0 RH) 1200 16 10 700ms 60 
Participant 4 28 M AMC ECoG 26 (0 RH) 106 (0 RH) 134 (0 RH) 1200 64 10 700ms 60 
Participant 5 25 F AMC ECoG 48 (0 RH) 93 (0 RH) 98 (0 RH) 1200 64 10 450ms 80 
Participant 6 20 F AMC ECoG 7 (3 RH) 36 (20 RH) 36 (20 RH) 1200 64 10 450ms 80 

Table 1: Details for Dataset 1. (All data were collected at the Albany Medical Center (Site=AMC).) 
Here and in Table 2, ‘Total electrodes’ excludes reference electrodes, ground electrodes, 
microphone electrodes, trigger electrodes, skull EEG electrodes, and EKG electrodes; and ‘Total 
clean electrodes’ excludes electrodes with significant line noise, significant interictal discharges, 
or large visual artifacts identified through manual inspection. ‘Elec per amp’ – Number of 
electrodes per amplifier. ‘Pres rate (per word)’ – duration of presentation of each single word or 
nonword. 
 

Participant Age Sex Site ECoG 
or 
sEEG 

Language-
responsive 
electrodes 
(S>N) 

Total clean 
electrodes 

Total 
electrodes 

Native 
sampling 
freq (Hz) 

Elec  
per  
amp 
 

Runs Pres rate 
(per word) 

Trials 
per 
cond 

Participant 7 51 M AMC EcoG 14 (7 RH) 116 (25 RH) 126 (26 RH) 1200 64 3 750ms 48 
Participant 8 30 F AMC both 18 (0 RH) 76 (1 RH) 92 (3 RH) 1200 64 3 750ms 72 
Participant 9 31 M AMC sEEG 2 (1 RH) 90 (44 RH) 98 (52 RH) 1200 64 2 600ms 72 
Participant 10 59 F AMC sEEG 2 (0 RH) 113 (0 RH) 124 (0 RH) 1200 64 2 600ms 72 
Participant 11 23 M AMC EcoG 58 (33 RH) 209 (110 RH) 216 (110 RH) 1200 64 2 600ms 72 
Participant 12 39 M AMC sEEG 5 (5 RH) 112 (112 RH) 128 (128 RH) 1200 64 2 600ms 72 
Participant 13 29 M AMC EcoG 9 (0 RH) 126 (0 RH) 132 (0 RH) 1200 64 2 600ms 72 
Participant 14 36 M AMC sEEG 3 (2 RH) 169 (84 RH) 184 (90 RH) 1200 64 2 600ms 72 
Participant 15 25 M BJH sEEG 19 (16 RH) 183 (93 RH) 183 (93 RH) 1000 64 2 600ms 72 
Participant 16 38 M BJH sEEG 49 (15 RH) 169 (72 RH) 224 (112 RH) 1000 64 2 600ms 72 
Participant 17 31 F BJH sEEG 17 (0 RH) 228 (30 RH) 228 (30 RH) 1000 64 2 600ms 72 
Participant 18 40 M BJH sEEG 35 (5 RH) 137 (11 RH) 192 (14 RH) 1000 64 2 600ms 72 
Participant 19 66 M BJH sEEG 32 (1 RH) 210 (13 RH) 234 (16 RH) 2000 64 2 600ms 72 
Participant 20 24 M BJH sEEG 7 (0 RH) 156 (30 RH) 218 (30 RH) 2000 64 2 600ms 72 
Participant 21 39 M MCJ sEEG 11 (1 RH) 108 (45 RH) 109 (45 RH) 1200 64 1 600ms 36 
Participant 22 21 F SLCH sEEG 81 (81 RH) 176 (176 RH) 186 (186 RH) 2000 64 2 600ms 72 

Table 2: Details for Dataset 2. (The data were collected at four sites: Albany Medical Center 
(Site=AMC), Barnes-Jewish Hospital (Site=BJH), Mayo Clinic Jacksonville (Site=MCJ), and St. Louis 
Children’s Hospital (Site=SLCH)).  
 
 
Clustering analysis 
Using Dataset 1 (n=6 participants, m=177 language-responsive electrodes), we created a single 
timecourse per electrode by concatenating the average timecourses across the four conditions 
(sentences (S), word-lists (W), Jabberwocky sentences (J), nonword-lists (N)). All the timepoints 
of the concatenated timecourses (864 data points: 60 Hz * 4 conditions * 3.60 seconds per trial 
after resampling) served as input to a k-medoids clustering algorithm (Kaufman & Rousseuw, 
1990). K-medoids is a clustering technique that divides data points—electrodes in our case—into 
k groups, where k is predetermined. The algorithm attempts to minimize the distances between 
each electrode and the cluster center, where cluster centers are represented by ‘medoids’ 
(exemplar electrodes selected by the algorithm) and the distance metric is correlation-based. K-
medoids clustering was chosen over the more commonly used k-means clustering to allow for 
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the use of a correlation-based distance metric as we were most interested in the shape of the 
timecourses over their scale which can vary due to cognitively irrelevant physiological differences 
(but see Figure S1 for evidence that similar clusters emerge with a k-means clustering algorithm 
using a Euclidean distance). 
 
Optimal number of clusters 
To determine the optimal number of clusters, we used the “elbow” method (e.g., Rokach and 
Maimon, 2005) which searches for the value of k above which the increase in explained variance 
becomes more moderate. For each k (between 2 and 10), k-medoids clustering was performed, 
and explained variance was computed as the sum of the correlation-based distances of all the 
electrodes to their assigned cluster center and normalized to the sum of the distances for k=1 
(equivalent to the variance of the full dataset). This explained variance was plotted against k and 
the “elbow” was determined as the point after which the derivative became more moderate. We 
also plotted the derivative of this curve for easier inspection of the transition point. 
 
Electrode discrimination between conditions 
To examined the timecourse of condition divergence, as quantified by the electrodes’ ability to 
linearly discriminate between the magnitudes of pairs of conditions. We focused on condition 
pairs that critically differ in their engagement of particular linguistic processes: conditions S and 
W, which differ in whether they engage combinatorial (syntactic and semantic) processing 
(S=yes, W=no), and conditions W and N, which differ in whether they engage word meaning 
processing (W=yes, N=no). This analysis tests how early the relevant pair of conditions reliably 
diverge. For every electrode, the mean response to the three conditions of interest (S, W, and N) 
was averaged across 100 ms bins with a 50 ms sliding window (i.e., 50% overlap between adjacent 
time bins). For each cluster separately, a set of 20 models (binary logistic classifiers) was trained 
(to discriminate S from W, or W from N) at each time bin using the binned neural signal up to, 
and including, that time bin. Each classifier was trained using 10-fold cross validation (train on 
90% of the data and test using the remaining 10%, repeated for 10 splits of the data such that 
every observation was included in the test set exactly once). The predicted and actual conditions 
across all folds were used to calculate one accuracy per classifier (the percent of mean responses 
from all electrodes in a particular cluster correctly classified as S/W or W/N; 20 accuracies in 
total). The performance of the set of models at a given time bin was evaluated against the 50% 
(chance) baseline using a one-sample t-test.  
 
Electrode locking to onsets of individual word/nonwords 
To estimate the degree of stimulus locking for each electrode and condition separately, we fitted 
a sinusoidal function that represented the stimulus train to the mean of the odd trials and then 
computed the Pearson correlation between the fitted sinusoidal function and the mean of the 
even trials. For the sinusoidal function fitting, we assumed that the frequency of the sinusoidal 
function was the frequency of stimulus presentation and we fitted the phase, amplitude and 
offset of the sinusoidal by searching parameter combinations that minimized the sum of squared 
differences between the estimated sinusoidal function and the data. Cross-validation (fitting on 
odd trials and computing the correlation on even trials) ensured non-circularity. To statistically 
quantify differences in the degree of stimulus locking between the clusters and among the 
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conditions, we ran a linear mixed-effects (LME, using the MATLAB procedure fitlme: MATLAB)  
model regressing the locking values of all electrodes and conditions on the fixed effects 
categorical variable of cluster (with 3 levels for Cluster 1, 2 or 3 according to which cluster each 
electrode was assigned to) and condition (with 4 levels for conditions S, W, J, N), both grouped 
by the random effects variable of participant, as well as a fixed interaction term between cluster 
and condition: 
 
Locking ~ 1 + cluster*condition + (cluster|participant) + (condition|participant) 
 
An ANOVA test for LME was used to determine the main effects of cluster and condition and their 
interaction. Pairwise comparisons of all 3 clusters and 4 conditions as well as interactions 
between all (cluster, condition) pairs were extracted from the model estimates. 
 
Cluster stability across trials  
We evaluated the stability of the clustering solution by performing the same clustering procedure 
as described above (Clustering analysis) on half the trials. To evaluate the similarity of the clusters 
derived based on only half of the trials to the clusters derived based on all trials, we first had to 
determine how clusters correspond between any two solutions. In particular, given that the 
specific order of the clusters that the k-medoids algorithm produces depends on the (stochastic) 
choice of initial cluster medoids, the electrodes that make up cluster 1 in one solution may be 
labelled as cluster 2 in another solution. To determine cluster correspondence across solutions, 
we matched the cluster centers (computed here as the average timecourse of all electrodes in a 
given cluster) from a solution based on half of the trials to the most highly correlated cluster 
centers from the solution based on all trials. 
 
We then conducted a permutation analysis to statistically compare the clustering solutions. This 
was done separately for each of the two halves of the data (odd- and even-numbered subsets of 
trials). Under the null hypothesis, no distinct response profiles should be detectable in the data, 
and consequently, responses in one electrode should be interchangeable with responses in 
another electrode. Using half of the data, we shuffled individual trials across electrodes (within 
each condition separately), re-clustered the electrodes into 3 clusters, and then correlated the 
resulting cluster centers to the ‘corresponding’ cluster centers from the full dataset. We repeated 
this process 1,000 times to construct a null distribution of the correlations for each of the 3 
clusters. These distributions were used to calculate the probability that the correlation between 
the clusters across the two solutions using the actual, non-permuted data was higher than would 
be expected by chance. 
 
This permutation analysis was used in all subsequent analyses that compare two clustering 
solutions (e.g., comparing clusters from Dataset 2 with clusters from Dataset 1). 
 
Cluster robustness to data loss  
We evaluated the robustness of the clustering solution to loss of electrodes to ensure that the 
solution was not driven by particular electrodes or participants. 
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To evaluate the similarity of the clusters derived based on only a subset of language-responsive 
electrodes to the clusters derived based on all electrodes, we progressively removed electrodes 
from the full set (n=177) until only 3 electrodes remained (required to split the data into 3 
clusters) in increments of 5. Each subset of electrodes was clustered into 3 clusters, and the 
cluster centers were correlated with the corresponding cluster centers (see 1 above) from the 
full set of electrodes. For each subset of electrodes, we repeated this process 100 times, omitting 
a different random set of n electrodes with replacement, and computed the average correlation 
across repetitions. 
 
To statistically evaluate whether the clustering solutions with only a subset of electrodes were 
more similar to the solution on the full set of electrodes on average (across the 100 repetitions 
at each subset size) than would be expected by chance, we conducted a permutation analysis like 
the one described in 1. In particular, using the full dataset, we shuffled individual trials across 
electrodes (within each condition separately), re-clustered the electrodes into 3 clusters, and 
then correlated the resulting cluster centers to the 'corresponding’ cluster centers from the 
actual, non-shuffled data. We repeated this process 1,000 times to construct a null distribution 
of the correlations for each of the 3 clusters. These distributions were used to calculate the 
probability that the correlation between the clusters across the two solutions using the actual, 
non-permuted data (a solution on all the electrodes and a solution on a subset of the electrodes) 
was higher than would be expected by chance. To err on the conservative side, we chose the null 
distribution for the cluster with the highest average correlation in the permuted version of the 
data. For each subset of electrodes, if the average correlation (across the 100 repetitions) fell 
below the 95th percentile of the null distribution, this was taken to suggest that the clustering 
solution based on a subset of the electrodes was no longer more correlated to the solution on 
the full set of electrodes than would be expected by chance. 
 
Estimation of temporal receptive window size per electrode 
We used a simplified model to simulate neural responses in the sentence (S) condition as a 
convolution of a stimulus train and gaussian kernels with varying widths. The kernels represented 
the temporal receptive window (TRW) of an idealized neural population underlying the 
intracranial responses measured by a single electrode. The kernels were constructed from 
gaussian curves with a standard deviation of 𝜎/2 truncated at +/- 1 standard deviation (capturing 
2/3 of the area under the gaussian, Figure 5A). We then normalized the truncated gaussians to 
have a minimum of 0 and maximum of 1. The stimulus train was represented by 1 at the time of 
new word onsets and 0 otherwise. The resulting simulated neural signals were also normalized 
to be between 0 and 1. Neural responses were simulated for 𝜎 ranging from one third of a word 
to 8 words (the length of our stimuli), in 1 sample increments (60Hz, 1/27th of a word, the highest 
resolution we were able to evaluate at the given sampling rate). To find the best fit of the 
receptive window size for each electrode, we selected the TRW size that yielded the highest 
correlation between the simulated and actual neural response. The value of the correlation was 
taken as a proxy for the goodness of fit.   
 
To evaluate significance we ran linear mixed-effects (LME) models regressing the estimates 
temporal receptive window sizes (𝜎) of all electrodes on the fixed effects categorical variable of 
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cluster grouped by the random effects variable of participant. Cluster was dummy-coded as a 
categorical variable with three levels, and Cluster 1 was treated as the baseline intercept. This 
approach allowed us to compare electrodes in Cluster 2 to those in Cluster 1, and electrodes in 
Cluster 3 to those in Cluster 1. To additionally compare electrodes in Clusters 2 vs. 3, we 
compared their LME coefficients using the MATLAB procedure coefTest. 
 
Anatomical topography analysis 
We examined the anatomical topographic distribution of the electrodes that exhibit the three 
temporal response profiles discovered in Dataset 1. Specifically, we probed the spatial 
relationships between all pairs of electrodes that belong to different clusters (e.g., electrodes in 
Cluster 1 vs. 2) with respect to the two axes: anterior-posterior [y], and inferior-superior [z]. This 
approach allowed us to ask whether, for example, electrodes that belong to one cluster tend to 
consistently fall posterior to the electrodes that belong to another cluster. 
 
To do this, we extracted the MNI coordinates of all the electrodes in each of the three clusters 
and ran linear mixed-effects (LME) models regressing each of the coordinates (x, y, and z) on the 
fixed effects categorical variable of cluster grouped by the random effects variable of participant. 
The random effect that groups the estimates by participant ensures that electrode coordinates 
are compared within participants, which is important given the inter-individual variability in the 
precise locations of language areas (e.g., Fedorenko et al., 2010), which means that the absolute 
values of MNI coordinates cannot be easily compared between participants. Cluster was dummy-
coded as a categorical variable with three levels, and Cluster 1 was treated as the baseline 
intercept. This approach allowed us to compare electrodes in Cluster 2 to those in Cluster 1, and 
electrodes in Cluster 3 to those in Cluster 1. To additionally compare electrodes in Clusters 2 vs. 
3, we compared their LME coefficients using the MATLAB procedure coefTest. 
 
We repeated this analysis for Dataset 2, but we only examined Clusters 1 and 3, which were 
robustly present in that dataset. We performed the analysis for the electrodes in the two 
hemispheres separately. 
 
Replication of the clusters in Dataset 2. 
As described in Experiment, the design that was used for participants in Dataset 1 included four 
conditions: sentences (S), word-lists (W), Jabberwocky sentences (J), and nonword-lists (N). 
Because the design in Dataset 2 included only two of the four conditions (sentences (S) and 
nonword-lists (N)), we first repeated the clustering procedure for Dataset 1 using only the S and 
N conditions to test whether similar clusters could be recovered with only a subset of conditions. 
 
We then applied the same clustering procedure to Dataset 2 (n=16 participants, m=362 language-
responsive electrodes). The elbow method revealed that the optimal number of clusters in 
Dataset 2 is k=2. However, because the optimal number of clusters in Dataset 1 was k=3, we 
examined the clustering solutions at both k=2 and k=3 levels. 
 
To statistically compare the clustering solutions between Datasets 1 and 2 for k=3, we used the 
same procedure as the one described above (Stability of clusters across trials). In particular, using 
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Dataset 2, we shuffled individual trials across electrodes (within each condition separately), re-
clustered the electrodes into 3 clusters, and then correlated the resulting cluster centers to the 
'corresponding’ cluster centers from Dataset 1. We repeated this process 1,000 times to 
construct a null distribution of the correlations for each of the 3 clusters. These distributions were 
used to calculate the probability that the correlation between the clusters across the two 
datasets using the actual, non-permuted Dataset 2 was higher than would be expected by 
chance. 
 
To statistically compare the clustering solutions when k=3 in Dataset 1 and k=2 in Dataset 2, we 
used a similar procedure as the one described above. However, we only compared the resulting 
cluster centers from the permuted data to the two clusters in Dataset 1 that were most strongly 
correlated with the two clusters that emerge from Dataset 2 (i.e., Clusters 1 and 3).  
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Data Availability  
 
Preprocessed data will be publicly available on OpenNeuro at the time of publication. All stimuli 
will be available on OSF as well. Raw data will be made available upon request. 
 
 
Code Availability 
 
Code used to conduct analyses and generate figures from the preprocessed data will be publicly 
available on GitHub at the time of publication.  
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Supplementary Information 
 

 
Figure S1 – Dataset 1 k-means clustering results. A) Search for optimal k using the “elbow method”. Top: 
variance (sum of the distances of all electrodes to their assigned cluster center) normalized by the variance when 
k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a function of k (NV(k+1) – NV(k)). After 
k=4 the change in variance becomes more moderate, suggesting that 4 clusters appropriately describe this dataset. 
B) Clustering mean electrode responses (S+W+J+N) using k-means (k=4) with squared-Euclidean distance. Shading 
of the data matrix reflects normalized high-gamma power (70-150Hz). C) Electrode responses visualized on their first 
two principal components, colored by cluster. D) Average timecourse by cluster. Clusters 1-3 resemble the clusters 
reported in Figure 3, and Cluster 4 is qualitatively similar to Cluster 1 with a less pronounced increase of neural 
activity over the course of a sentence. E) Mean condition responses by cluster. Error bars reflect standard error.  F) 
Response reliability across odd and even trials (based on a correlation of mean responses) by cluster. Electrodes in 
the Cluster 4 (the cluster that does not emerge when k-medoids clustering is used) display the least reliable 
responses to linguistic stimuli relative to the other clusters. G) Anatomical distribution of clusters across all 
participants (n=6). 
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Figure S2 – Cluster evaluation within Dataset 1. A) Comparison of clusters from all trials (top three rows) 
versus only even (middle three rows) or odd (bottom three rows) trials. Clusters that emerge using only odd or even 
trials are strikingly similar to the clusters that emerge when all trials are used (ps<0.001; evaluated against clustering 
solutions when trials are shuffled; Methods). B) Robustness of clusters electrode omission (random subsets of 
electrodes were removed in increments of 5). Top: Similarity of cluster centers when all electrodes were used versus 
when subsets of electrodes were removed. Stars reflect significant similarity with the full dataset (p<0.05; evaluated 
against clustering solution when trials are shuffled; Methods). Shaded regions reflect standard error. Cluster 3 is 
driven the most by individual electrodes relative to Clusters 1 and 2. Bottom: Similarity between cluster centers 
when subsets of electrodes are removed. Shaded regions reflect standard error. The relationship between clusters 
(e.g., similarity of Clusters 1 and 2) remains stable (very little change in correlation) until the cluster centers no longer 
resemble the cluster centers from all electrodes (see Top). 
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Figure S3 – Dataset 1 k-medoids clustering results with only S-N conditions. A) Search for optimal k 
using the “elbow method”. Top: variance (sum of the distances of all electrodes to their assigned cluster center) 
normalized by the variance when k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a 
function of k (NV(k+1) – NV(k)). After k=3 the change in variance becomes more moderate, suggesting that 3 clusters 
appropriately describe Dataset 1 when using only the responses to sentences and nonwords (as was the case when 
all four conditions were used). B) Clustering mean electrode responses (only S+N, importantly) using k-medoids (k=3) 
with a correlation-based distance. Shading of the data matrix reflects normalized high-gamma power (70-150Hz). C) 
Average timecourse by cluster. Clusters 1-3 show striking similarity to the clusters reported in Figure 3. D) Mean 
condition responses by cluster. Error bars reflect standard error.  E) Electrode responses visualized on their first two 
principal components, colored by cluster. F) Anatomical distribution of clusters across all participants (n=6). G) 
Robustness of clusters electrode omission (random subsets of electrodes were removed in increments of 5). Stars 
reflect significant similarity with the full dataset (p<0.05; evaluated against clustering solution when trials are 
shuffled; Methods). Shaded regions reflect standard error. Relative to when all conditions were used, Cluster 2 is 
less robust to electrode omission (although still more robust than Cluster 3), suggesting that responses to word-lists 
and Jabberwocky sentences (both not present here) are particularly important for distinguishing Cluster 2 electrodes 
from Cluster 1 and 3 electrodes.  
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Figure S4 – Dataset 2 k-medoids clustering results with k=2. A) Search for optimal k using the “elbow 
method”. Top: variance (sum of the distances of all electrodes to their assigned cluster center) normalized by the 
variance when k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a function of k (NV(k+1) – 
NV(k)). After k=2 the change in variance becomes more moderate, suggesting that 2 clusters appropriately describe 
Dataset 2 (for a direct comparison of Dataset 1 and Dataset 2 when k=3, see Figure 7). B) Clustering mean electrode 
responses (S+N) using k-medoids (k=2) with a correlation-based distance. Shading of the data matrix reflects 
normalized high-gamma power (70-150Hz). C) Average timecourse by cluster. Here, Clusters 1 and 2 are significantly 
similar to Clusters 1 and 3, respectively, from Figure 3 (ps<0.001, evaluated against clustering solutions when trials 
are shuffled; Methods). D) Mean condition responses by cluster. Error bars reflect standard error. E) Electrode 
responses visualized on their first two principal components, colored by cluster. F) Anatomical distribution of clusters 
across all participants (n=16). 
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Figure S5 – Anatomical distribution of the clusters in Dataset 2. Anatomical distribution of language-
responsive electrodes in Dataset 2 across all subjects in MNI space, colored by cluster. Only Clusters 1 and 3 (those 
from Dataset 1 that replicate to Dataset 2) are shown. B) Anatomical distribution of language-responsive electrodes 
in subject-specific space for eight sample subjects. C-H) Violin plots of MNI coordinate values for Clusters 1 and 3 in 
the left and right hemisphere (C-E and F-H, respectively), where plotted points represent the mean of all coordinate 
values for a given participant and cluster. The mean is plotted with a black horizontal line, and the median is shown 
with a white circle. Significance values are computed using a linear mixed-effects model (LME, see Tables S3 and S4; 
Methods). The Cluster 3 posterior bias from Dataset 1 is weakly present but not statistically reliable. 
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Figure S6 – Estimation of temporal receptive window sizes for electrodes in Dataset 1, 
separated by presentation rate. As in Figure 5 but separating the participants by slow or fast presentation 
rate. A,C) Best TRW fit (using a model that simulates neural responses to the sentence condition as a convolution of 
a simplified stimulus train and gaussian kernels with varying widths) for all electrodes colored by cluster and sized 
by the reliability of the neural signal as estimated by correlating responses to odd and even trials (Figure 2D) . The 
‘goodness of fit’, or correlation between the simulated and observed neural signal (sentence condition only), is 
shown on the y-axis. A) Best TRW fit for the 3 participants that saw the fast presentation rate (450 ms per 
word/nonword). C) Best TRW fit for the 3 participants that saw the slow presentation rate (700 ms per 
word/nonword). B,D) Estimated TRW sizes across all electrodes (grey) and per cluster (red, green, and blue). Black 
vertical lines correspond to the mean window size and the white dots correspond to the median. “x” marks indicate 
outliers (more than 1.5 interquartile ranges above the upper quartile or less than 1.5 interquartile ranges below the 
lower quartile). Significance values are calculated using a linear mixed-effects model (LME, Methods). B) Estimated 
TRW sizes for the 3 participants that saw the fast presentation rate (450 ms per word/nonword). D) Estimated TRW 
sizes for the 3 participants that saw the slow presentation rate (700 ms per word/nonword). The similarity of the 
TRW distributions across the two presentation rates suggest that the TRW of these electrodes are language-, not 
time-dependent. 
 

0 0.5 1 1.5 2 2.5 3 3.5-0.2

0

0.2

0.4

0.6

0.8

1

G
oo

dn
es

s 
of

 F
it 

(c
or

re
la

tio
n 

w
ith

 c
lo

se
st

 s
im

ul
at

ed
 s

ig
na

l)

G
oo

dn
es

s 
of

 F
it 

(c
or

re
la

tio
n 

w
ith

 c
lo

se
st

 s
im

ul
at

ed
 s

ig
na

l)

0 1 2 3 4 5-0.2

0

0.2

0.4

0.6

0.8

1

Fitted Temporal Receptive Window (ı, seconds) Fitted Temporal Receptive Window (ı, seconds)

0.900.600.300.05

Reliability of Neural Signal
(correlation odd vs. even trials)

Fast Presentation Rate (450 ms per word; n=3) Slow Presentation Rate (700 ms per word; n=3)

A C

Cluster 1

Cluster 2

Cluster 3

All

Cluster 1

Cluster 2

Cluster 3

All

B D

0 1 2 3 4 5

Fitted Temporal Receptive Window (ı, seconds)

0 0.5 1 1.5 2 2.5 3 3.5

Fitted Temporal Receptive Window (ı, seconds)

0.900.600.300.05

Reliability of Neural Signal
(correlation odd vs. even trials)

p<0.001***

***
**

***

**
*

***

p<0.01**
p<0.05*

p<0.001***
p<0.01**
p<0.05*

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.12.30.522216doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

 
Figure S7 – Estimation of temporal receptive window sizes for electrodes in Dataset 2. As in 
Figure 5 but for electrodes in Dataset 2. A) Best TRW fit (using a model that simulates neural responses to the 
sentence condition as a convolution of a simplified stimulus train and gaussian kernels with varying widths) for all 
electrodes colored by cluster and sized by the reliability of the neural signal as estimated by correlating responses 
to odd and even trials (Figure 2D). The ‘goodness of fit’, or correlation between the simulated and observed neural 
signal (sentence condition only), is shown on the y-axis. B) Estimated TRW sizes across all electrodes (grey) and per 
cluster (red, green, and blue). Black vertical lines correspond to the mean window size and the white dots correspond 
to the median. “x” marks indicate outliers (more than 1.5 interquartile ranges above the upper quartile or less than 
1.5 interquartile ranges below the lower quartile). Significance values are calculated using a linear mixed-effects 
model (LME, Methods).   
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Name Estimate SE tStat DF pValue 

Intercept: Cluster 1, Condition S 0.102 0.022 4.651 696 4.0E-06 
Cluster 2 0.077 0.035 2.180 696 3.0E-02 

Cluster 3 0.241 0.074 3.237 696 1.3E-03 

Condition W -0.023 0.025 -0.885 696 3.8E-01 
Condition J -0.036 0.027 -1.344 696 1.8E-01 

Condition N -0.061 0.026 -2.317 696 2.1E-02 

coefTest Cluster 3 vs. 2 NaN NaN 2.14 1 0.03 
coefTest Condition N vs. W NaN NaN 1.45 1 0.15 

coefTest Condition J vs. W NaN NaN 0.50 1 0.62 

coefTest Condition N vs. J NaN NaN 0.85 1 0.40 
Cluster 2 * Condition W -0.03 0.04 -0.66 696 0.51 

Cluster 3 * Condition W 0.02 0.06 0.35 696 0.73 

Cluster 2 * Condition J -0.04 0.04 -1.06 696 0.29 
Cluster 3 * Condition J 0.01 0.06 0.10 696 0.92 

Cluster 2 * Condition N -0.06 0.04 -1.60 696 0.11 

Cluster 3 * Condition N -0.04 0.06 -0.71 696 0.48 

 
Table S1 LME results quantifying degree of stimulus locking by cluster. All estimates from the linear 
mixed-effects model (LME) regressing the locking value (Methods) on the categorical variables of cluster (3 levels) 
and condition (4 levels for sentences (S), word-lists (W), jabberwocky (J), nonword-lists (N), Methods), including their 
interaction, all grouped by the random variable of participant. Model formula: Locking ~ cluster*condition + 
(cluster|participant) + (condition|participant)). Implemented with Matlab fitlme routine. Asterisks represent 
interactions. The first level of the variables was modeled as an intercept (Cluster 1, Condition: S) and all other 
estimates were evaluated and compared statistically to the intercept. In order to compare other pairs of estimates 
we ran a coefficient test post-hoc using Matlab routine coeftest. The pairwise comparisons of all 3 clusters were 
significant (all ps<0.05). The only pairwise comparison between conditions that was significant was S vs. N (p<0.05), 
and all other condition comparisons did not reach significance. All interaction terms were not significant. An 
additional ANOVA test for LME revealed a significant main effect for cluster (F(2,696)=5.6, p<0.01) and the main 
effect for condition as well as the interaction term did not reach significance. See Figure 5. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 1 y Cluster 1 1.38 3.77 0.37 171 0.71421 
Dataset 1 y Cluster 2 -2.93 3.57 -0.82 171 0.41348 
Dataset 1 y Cluster 3 -21.15 5.87 -3.60 171 0.00041 
Dataset 1 y coefTest Cluster3-2 NaN NaN -3.11 1 0.00219 
Dataset 1 z Cluster 1 -4.82 4.38 -1.10 171 0.27330 
Dataset 1 z Cluster 2 17.37 6.94 2.50 171 0.01332 
Dataset 1 z Cluster 3 11.08 8.19 1.35 171 0.17825 
Dataset 1 z coefTest Cluster3-2 NaN NaN -0.82 1 0.41411 

 
Table S2 – LME results comparing MNI coordinates of the 3 clusters, Dataset 1, Left hemisphere. 
All estimates from the linear mixed-effects model (LME) regressing the y (posterior-anterior) and z (inferior-superior) 
MNI coordinates (Methods) on the categorical variable of cluster (3 levels) grouped by the random variable of 
participant. Model formula: MNI coordinate ~ cluster + (cluster|participant). Details are similar to Table S1. The y-
coordinate of Cluster 3 was significantly different from Clusters 1 and 2 (ps<0.01). All the other comparisons did not 
reach significance. See Figure 6. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y Cluster 1 -5.20 7.08 -0.73 196 0.4636 

Dataset 2 y Cluster 2 -7.28 9.80 -0.74 196 0.4584 

Dataset 2 y Cluster 3 -0.97 10.34 -0.09 196 0.9255 

Dataset 2 y coefTest_Cluster3-2 NaN NaN 0.81 1 0.4210 

Dataset 2 z Cluster 1 3.10 4.03 0.77 196 0.4426 

Dataset 2 z Cluster 2 12.71 3.82 3.32 196 0.0011 

Dataset 2 z Cluster 3 7.20 5.84 1.23 196 0.2185 
Dataset 2 z coefTest_Cluster3-2 NaN NaN 0.95 1 0.3451 

 
Table S3 – LME results comparing coordinates of the 3 clusters, Dataset 2, Left hemisphere. 
Similar to Table S1 but for Dataset 2, left hemisphere electrodes. The only significant comparison was the z-
coordinate of Cluster 2 relative to Clusters 1 (p<0.01). See Figure S5. 
 
 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 2 y Cluster 1 2.5 6.9 0.4 160 0.717 

Dataset 2 y Cluster 2 -17.3 6.9 -2.5 160 0.014 
Dataset 2 y Cluster 3 -7.5 7.1 -1.1 160 0.294 

Dataset 2 y 
coefTest_Cluster3-

2 NaN NaN 1.4 1 0.178 

Dataset 2 z Cluster 1 -8.4 5.7 -1.5 160 0.143 
Dataset 2 z Cluster 2 5.1 4.7 1.1 160 0.271 
Dataset 2 z Cluster 3 14.5 5.7 2.5 160 0.012 

Dataset 2 z 
coefTest_Cluster3-

2 NaN NaN 2.2 1 0.028 
 
Table S4 – LME results comparing coordinates of the 3 clusters, Dataset 2, Right hemisphere. 
Similar to Table S3 but for right-hemisphere electrodes. The significant comparisons were the y-coordinates of 
Cluster 2 vs. 1 and the z-coordinates of Cluster 3 relative to clusters 2 and 1 (p<0.05). See Figure S5. 
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Name Estimate SE tStat DF pValue 
Cluster 1 6.5 0.5 13.9 174 6.9E-30 

Cluster 2 -2.5 0.6 -4.5 174 1.3E-05 

Cluster 3 -5.0 0.6 -8.2 174 4.6E-14 
coefTest_Cluster3-2 NaN NaN 4.14 1 5.4E-05 

Table S5 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 1.  
All estimates from the linear mixed-effects model (LME) regressing the estimated temporal receptive window (trw) 
size (Methods) on the categorical variable of cluster (3 levels) grouped by the random variable of participant. Model 
formula: trw ~ cluster + (cluster|participant). Details are similar to Table S1. All comparisons were statisitically 
significant: Cluster 2 had a smaller trw compared to Cluster 1, and Cluster 3 had the smallest trw compared to both 
other clusters (all ps<0.0001). See Figure 4. 
 
 

Name Estimate SE tStat DF pValue 

Cluster 1 2.6 0.3 10.3 114 6.4E-18 

Cluster 2 -1.0 0.2 -4.3 114 3.6E-05 
Cluster 3 -2.1 0.4 -4.9 114 3.8E-06 

coefTest_Cluster3-2 NaN NaN 2.8 1 5.9E-03 
Table S6 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 1, only 
participants with the faster presentation rate (450 ms, n=3). 
Similar to Table S5, but only participants with the faster presentation rate (450 ms, n=3). All comparisons are 
significant (ps<0.0001). See Figure S6. 
 

Name Estimate SE tStat DF pValue 

Cluster 1 5.2 0.3 15.4 57 6.4E-22 

Cluster 2 -2.3 0.8 -2.9 57 5.2E-03 
Cluster 3 -3.7 0.7 -5.4 57 1.2E-06 

coefTest_Cluster3-2 NaN NaN 2.62 1 0.011 
Table S7 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
1, only participants with the slower presentation rate (700 ms, n=3). 
Similar to Table S6, but only participants with the slower presentation rate (700 ms, n=3). All comparisons are 
significant (ps<0.05). See Figure S6. 
 

Name Estimate SE tStat DF pValue 

Cluster 1 4.5 0.3 14.2 359 1.8E-36 

Cluster 2 -3.3 0.4 -8.9 359 3.4E-17 
Cluster 3 -3.2 0.3 -9.8 359 3.1E-20 

coefTest_Cluster3-2 NaN NaN 0.12 1 0.91 
Table S8 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
2, using 8 words. 
Similar to Table S5, but for Dataset 2 using the first 8 words per each trial. All comparisons except for Cluster 3 vs. 2 
are significant (ps<0.0001). See Figure S7. 
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Name Estimate SE tStat DF pValue 
Cluster 1 5.3 0.4 12.7 359 1.2E-30 

Cluster 2 -3.9 0.5 -8.1 359 1.1E-14 

Cluster 3 -2.6 0.7 -4.0 359 9.1E-05 
coefTest_Cluster3-2 NaN NaN 1.6 1 0.11 

Table S9 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
2, using 12 words. 
Similar to Table S8, but for Dataset 2 using the full 12 words in a trial. All comparisons except for Cluster 3 vs. 2 are 
significant (ps<0.0001). 
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